Publications
Thought begins before we are born — recent research challenges the popular “blank slate” theory
By Emily Cerf Read on the UC Santa Cruz Newscenter Humans have long wondered when and how we begin to form thoughts. Are we born with a pre-configured brain, or do thought patterns only begin to emerge in response to our sensory experiences of the world around us?...
Why brain organoids are not conscious yet
In a perspective article for Patterns, Braingeneers researcher Kennith Kosik explains what brain organoids are and what they could become. While organoids raise questions about whether they could become conscious, Kosik emphasizes that current technologies fall far...
Brain cells are more plastic than previously thought, study shows
Using in-vitro models of a specific type of brain cell, scientists show that neurons are capable of changing from one type to another March 31, 2025 By Emily Cerf Neurons are the cells in the brain responsible for sending messages to the rest of the body, and...
2026
- van der Molen, T., Spaeth, A., Chini, M. et al. (2026). Preconfigured neuronal firing sequences in human brain organoids. Nature Neuroscience 29, 123–135. https://doi.org/10.1038/s41593-025-02111-0
-
[Preprint] , , et al. (2026). Scalable high-fidelity human vascularized cortical assembloids recapitulate neurovascular co-development and cell specialization.
2025
- Vera-Choqqueccota, S, Belmekki, BEY, Alouini, MS, et al. (2025). Reducing education inequalities through cloud-enabled live-cell biotechnology. Trends in Biotechnology, https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(24)00209-9
- Kosik, Kenneth. (2025). Why brain organoids are not conscious yet. Patterns, Cell Press Journal, https://www.cell.com/patterns/fulltext/S2666-3899(24)00136-3
- Mostajo-Radji, MA, Leon, WRM, Breevoort, A, et. al. (2025). Fate plasticity of interneuron specification. iScience, https://www.cell.com/iscience/fulltext/S2589-0042(25)00556-5
- Parks, D.F., Schneider, A.M., Xu, Y. et al. A nonoscillatory, millisecond-scale embedding of brain state provides insight into behavior. Nature Neuroscience 27, 1829–1843 (2024). https://doi.org/10.1038/s41593-024-01715-2
- Dechiraju, H, Li, Y, Comerci, C, Luo, L, et. al. (2025). Bioelectronic delivery of potassium ions controls membrane voltage and growth dynamics in bacteria biofilms. Biomedical Materials & Devices, Springer, https://doi.org/10.1007/S44174-024-00209-W
- Voitiuk, K, Seiler, ST, Melo, MP de, Geng, J, et. al. (2025). A feedback-driven brain organoid platform enables automated maintenance and high-resolution neural activity monitoring. Internet of Things, Elsevier, https://www.sciencedirect.com/science/article/pii/S2542660525001854
- Marquez, G, Jafari, M, Kesapragada, M, Zhu, K, Baniya, P, et. al. (2025). Controlling Cell Migratory Patterns Under an Electric Field Regulated by a Neural Network-Based Feedback Controller. Bioengineering, mdpi.com, https://www.mdpi.com/2306-5354/12/7/678
- Saiduzzaman, SM, Xu, R, Sampad, MJN, Hoffman, RN, et. al. (2025). Single molecule nanopore counting assay targeting small extracellular vesicle cargo for non-invasive monitoring of cerebral organoid development and health. Scientific Reports, nature.com, https://www.nature.com/articles/s41598-025-31284-8
- [Preprint] Hernandez, S, Schweiger, HE, Cline, I, Kaurala, GA, et. al. (2025). Self-organizing neural networks in organoids reveal principles of forebrain circuit assembly. bioRxiv, https://doi.org/10.1101/2025.05.01.651773.abstract
- Elliott, MAT, Andrews, JP, et. al. (2025). Microscale maps of bursting dynamics across human hippocampal slices from epilepsy patients. Journal of Physiology,, https://doi.org/10.1152/jn.00217.2025
- [Preprint] Molen, T van der, Spaeth, A, Chini, M, Hernandez, S, et. al. (2025). Protosequences in brain organoids model intrinsic brain states. bioRxiv, https://doi.org/10.1101/2023.12.29.573646
- [Preprint] Gonzalez-Ferrer, J, Lehrer, J, Schweiger, HE, Geng, J, et. al. (2025). HIPPIE: A Multimodal Deep Learning Model for Electrophysiological Classification of Neurons. bioRxiv, https://doi.org/10.1101/2025.03.14.642461
- Ehrlich, D, Rosen, Y, Parks, DF, Doganyigit, K, et. al. (2025). Microscope Upcycling: Transforming legacy microscopes into automated cloud-integrated imaging systems. HardwareX, Elsevier, https://www.sciencedirect.com/science/article/pii/S246806722500015X
- [Preprint] Rosen, Y, Doganyigit, K, Arul, S, Wachtel, E, Ehrlich, D, et. al. (2025). Incubator-Free Organoid Culture in a Sealed Recirculatory System. bioRxiv, https://doi.org/10.1101/2025.09.03.673593
- Zabetian, Z, Gonzalez-Ferrer, J, Lehrer, J, Jonsson, VD, et. al. (2025). Protocol for deep-learning-driven cell type label transfer in single-cell RNA sequencing data. STAR protocols, Elsevier, https://www.sciencedirect.com/science/article/pii/S2666166725001741
- Torres-Montoya, S, Hernandez, S, Seiler, ST, et. al. (2025). A Modular Platform for Automated Organoid Culture and Longitudinal Imaging., researchsquare.com, https://www.researchsquare.com/article/rs-7313439/latest
2024
- Andrews, JP, Geng, J, Voitiuk, K, Elliott, MAT, Shin, D, & … (2024). Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices. Nature Neuroscience, nature.com, https://www.nature.com/articles/s41593-024-01782-5
- Gonzalez-Ferrer, J, Lehrer, J, O’Farrell, A, Paten, B, & … (2024). SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis. Cell Genomics, cell.com, https://www.cell.com/cell-genomics/fulltext/S2666-979X(24)00165-4?dgcid=raven_jbs_etoc_email
- Park, Y, Hernandez, S, Hernandez, CO, & … (2024). Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters. Cell Reports, cell.com, https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(23)00372-7?dgcid=raven_jbs_etoc_email
- [Preprint] Robbins, A, Schweiger, HE, Hernandez, S, Spaeth, A, & … (2024). Goal-directed learning in cortical organoids. bioRxiv, biorxiv.org, https://doi.org/10.1101/2024.12.07.627350.abstract
- Marquez, G, Dechiraju, H, Baniya, P, Li, H, Tebyani, M, & … (2024). Delivering biochemicals with precision using bioelectronic devices enhanced with feedback control. Plos one, journals.plos.org, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298286
- [Preprint] Geng, J, Voitiuk, K, Parks, DF, Robbins, A, Spaeth, A, & … (2024). Multiscale Cloud-based Pipeline for Neuronal Electrophysiology Analysis and Visualization. bioRxiv https://doi.org/10.1101/2024.11.14.623530
- Spaeth, A, Haussler, D, & … (2024). Model-agnostic neural mean field with a data-driven transfer function. Neuromorphic Computing and Engineering, iopscience.iop.org, https://doi.org/10.1088/2634-4386/ad787f
- Ly, VT, Ehrlich, D, Sevetson, J, Hoffman, RN, Salama, SR, & … (2024). Gamifying cell culture training: The ‘Seru-Otchi’ experience for undergraduates. Heliyon, cell.com, https://www.cell.com/heliyon/fulltext/S2405-8440(24)06500-9
- Sano, T, Sampad, MJN, Gonzalez-Ferrer, J, & … (2024). Internet-enabled lab-on-a-chip technology for education. Scientific Reports, nature.com, https://www.nature.com/articles/s41598-024-65346-0
- Kuznetsov, M, Teodorescu, M, Mostajo-Radji, MA, & … (2024). QuickVol: A lightweight browser tool for immersive visualizations of volumetric data. iScience, cell.com, https://www.cell.com/iscience/fulltext/S2589-0042(24)02604-X
2023
2022
- Sharf, T., van der Molen, T., Glasauer, S.M.K. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat Commun 13, 4403 (2022). https://doi.org/10.1038/s41467-022-32115-4
- Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells. 2022; 11(18):2803. https://doi.org/10.3390/cells11182803
- Seiler ST, Mantalas GL, Selberg J, et al. Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids. Scientific Reports. 2022;12(1). doi:10.1038/s41598-022-20096-9
2021
- Ly VT, Baudin PV, Pansodtee P, et al. Picroscope: Low-cost system for simultaneous longitudinal biological imaging. Communications Biology. 2021;4(1):1261. doi:10.1038/s42003-021-02779-7.
- Baudin PV, Ly VT, Pansodtee P, et al. Low cost cloud based remote microscopy for Biological Sciences. Internet of Things. 2021:100454. doi:10.1016/j.iot.2021.100454.
- Voitiuk K, Geng J, Keefe MG, et al. Light-weight electrophysiology hardware and software platform for cloud-based neural recording experiments. Journal of Neural Engineering. 2021. doi:10.1101/2021.05.18.444685.
- Popova G, Soliman SS, Kim CN, et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell. 2021. doi:10.1016/j.stem.2021.08.015.
- Ziffra RS, Kim CN, Ross JM, et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature. 2021;598(7879):205-213. doi:10.1038/s41586-021-03209-8.
- Bhaduri A, Sandoval-Espinosa C, Otero-Garcia M, et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature. 2021;598(7879):200-204. doi:10.1038/s41586-021-03910-8.
2020
2019
- Wu C, Selberg J, Nguyen B, Pansodtee P, Jia M, Dechiraju H, Teodorescu M, Rolandi M. A Microfluidic Ion Sensor Array. Small mall 2020, 16, 1906436.
- Strakosas, X., Selberg, J., Pansodtee, P., Yonas, N., Manapongpun, P., Teodorescu, M., & Rolandi, M. (2019). A non-enzymatic glucose sensor enabled by bioelectronic pH control. Scientific reports, 9(1), 10844.
- Fiddes, I. T., Pollen, A. A., Davis, J. M., & Sikela, J. M. (2019). Paired involvement of human-specific Olduvai domains and NOTCH2NL genes in human brain evolution. Human genetics, 1-7.
- Linsley, J. W., Tripathi, A., Epstein, I., Schmunk, G., Mount, E., Campioni, M., … & Samsi, S. (2019). Automated four-dimensional long term imaging enables single cell tracking within organotypic brain slices to study neurodevelopment and degeneration. Communications biology, 2(1), 155.
- Mayer, S., Chen, J., Velmeshev, D., Mayer, A., Eze, U. C., Bhaduri, A., … & Alvarado, B. (2019). Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron, 102(1), 143-158.
- Pollen, A. A., Bhaduri, A., Andrews, M. G., Nowakowski, T. J., Meyerson, O. S., Mostajo-Radji, M. A., … & Fiddes, I. T. (2019). Establishing cerebral organoids as models of human-specific brain evolution. Cell, 176(4), 743-756.
- Pai, E. L. L., Vogt, D., Clemente-Perez, A., McKinsey, G. L., Cho, F. S., Hu, J. S., … & Nowakowski, T. J. (2019). Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function. Cell reports, 26(5), 1157-1173.
- Adorjan, I., Tyler, T., Bhaduri, A., Demharter, S., Finszter, C. K., Bako, M., … & Kriegstein, A. R. (2019). Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell RNA sequencing. Journal of anatomy.
- Field, A. R., Jacobs, F. M., Fiddes, I. T., Phillips, A. P., Reyes-Ortiz, A. M., LaMontagne, E., … & Hauessler, M. (2019). Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes. Stem cell reports, 12(2), 245-257.
2018
- Fiddes, I. T., Lodewijk, G. A., Mooring, M., Bosworth, C. M., Ewing, A. D., Mantalas, G. L., … & Lorig-Roach, R. (2018). Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell, 173(6), 1356-1369.
- Mostajo-Radji, M. A., & Pollen, A. A. (2018). Physiological Models of Human Neuronal Development and Disease. Neuron, 100(5), 1025-1027.
- Nowakowski, T. J., Rani, N., Golkaram, M., Zhou, H. R., Alvarado, B., Huch, K., … & Petzold, L. R. (2018). Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nature neuroscience, 21(12), 1784.


